题目内容
设函数f(x)=2mcos2x-2
msinx•cosx+n(m>0)的定义域为[0,
],值域为[1,4].
(1)求m,n的值;
(2)若f(x)=2,求x的值.
| 3 |
| π |
| 2 |
(1)求m,n的值;
(2)若f(x)=2,求x的值.
(1)f(x)=m(1+cos2x)-
msin2x+n
=2mcos(2x+
)+m+n.
∵x∈[0,
],
∴2x+
∈[
,
]
cos(2x+
)∈[-1,
],
∵m>0,2mcos(2x+
)∈[-2m,m],
所以f(x)max=2m+n=4,
f(x)min=-m+n=1,
m=1,n=2
(2)由(1)可知,m>0时,
f(x)=2cos(2x+
)+3=2所以cos(2x+
)=-
,结合定义域为[0,
],
解得x=
.
| 3 |
=2mcos(2x+
| π |
| 3 |
∵x∈[0,
| π |
| 2 |
∴2x+
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
cos(2x+
| π |
| 3 |
| 1 |
| 2 |
∵m>0,2mcos(2x+
| π |
| 3 |
所以f(x)max=2m+n=4,
f(x)min=-m+n=1,
m=1,n=2
(2)由(1)可知,m>0时,
f(x)=2cos(2x+
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 2 |
解得x=
| π |
| 6 |
练习册系列答案
相关题目