题目内容

已知数列{an},a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=(  )
A.
n(n+1)
2
B.
2
n(n+1)
C.
2n
n+1
D.
n
2(n+1)
∵点P(an,an+1)(n∈N*)在直线x-y+1=0上
∴an-an+1+1=0
∴数列{an}是以1为首项,以1为公差的等差数列.
∴an=n
sn=
n(n+1)
2

1
sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)
=
2n
n+1

故选C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网