题目内容
已知△ABC的内角A,B,C成等差数列,则cos2A+cos2C的取值范围是______.
∵A,B,C成等差数列,
∴2B=A+C,又A+B+C=π,
∴B=60°,即A+C=120°,
cos2A+cos2C
=
+
=1+
=1+cos(A+C)cos(A-C)
=1-
cos(A-C),
∵-1≤cos(A-C)≤1,
∴
≤1-
cos(A-C)≤
,
则cos2A+cos2C的取值范围是[
,
].
故答案为:[
,
]
∴2B=A+C,又A+B+C=π,
∴B=60°,即A+C=120°,
cos2A+cos2C
=
| 1+cos2A |
| 2 |
| 1+cos2c |
| 2 |
=1+
| cos2A+cos2C |
| 2 |
=1+cos(A+C)cos(A-C)
=1-
| 1 |
| 2 |
∵-1≤cos(A-C)≤1,
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
则cos2A+cos2C的取值范围是[
| 1 |
| 2 |
| 3 |
| 2 |
故答案为:[
| 1 |
| 2 |
| 3 |
| 2 |
练习册系列答案
相关题目