题目内容

设{an}是正项等差数列,{bn}是正项等比数列,且a1=b1,a2n+1=b2n+1则(  )
A.an+1=bn+1B.an+1≥bn+1C.an+1≤bn+1D.an+1<bn+1
∵{an}是正项等差数列,{bn}是正项等比数列,且a1=b1,a2n+1=b2n+1
∴an+1 =
a1+a2n+1
2
,b2n+1 =
b1?b2n+1
=
a1?a2n+1

∵由基本不等式可得  
a1+a2n+1
2
a1?a2n+1
,当且仅当 a1=a2n+1时,等号成立.
故有an+1≥bn+1
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网