题目内容
设{an}是正项等差数列,{bn}是正项等比数列,且a1=b1,a2n+1=b2n+1则( )
| A.an+1=bn+1 | B.an+1≥bn+1 | C.an+1≤bn+1 | D.an+1<bn+1 |
∵{an}是正项等差数列,{bn}是正项等比数列,且a1=b1,a2n+1=b2n+1 .
∴an+1 =
,b2n+1 =
=
.
∵由基本不等式可得
≥
,当且仅当 a1=a2n+1时,等号成立.
故有an+1≥bn+1,
故选B.
∴an+1 =
| a1+a2n+1 |
| 2 |
| b1?b2n+1 |
| a1?a2n+1 |
∵由基本不等式可得
| a1+a2n+1 |
| 2 |
| a1?a2n+1 |
故有an+1≥bn+1,
故选B.
练习册系列答案
相关题目