题目内容

设正数数列{an}的前n项和Sn满足Sn=
1
4
(an+1)2

(I)求数列{an}的通项公式;
(II)设bn=
1
anan+1
,求数列{bn}的前n项和Tn
分析:(Ⅰ)由题意知a1=1.an=Sn-Sn-1=
1
4
(an+1)2-
1
4
(an-1+1)2
,由此能够推导出an
(Ⅱ)由题意知Tn=b1+b2++bn=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)++
1
2
(
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)
=
n
2n+1
解答:解:(Ⅰ)当n=1时,a1=S1=
1
4
(a1+1)2

∴a1=1.(2分)
Sn=
1
4
(an+1)2
,①
Sn-1=
1
4
(an-1+1)2
(n≥2).②
①-②,得an=Sn-Sn-1=
1
4
(an+1)2-
1
4
(an-1+1)2

整理得,(an+an-1)(an-an-1-2)=0,(5分)
∵an>0
∴an+an-1>0.
∴an-an-1-2=0,即an-an-1=2(n≥2).(7分)
故数列{an}是首项为1,公差为2的等差数列.
∴an=2n-1.(9分)
(Ⅱ)∵bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,(11分)
∴Tn=b1+b2+bn=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)++
1
2
(
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)
=
n
2n+1
. (14分)
点评:本题考查数列的性质和应用,解题时要注意挖掘隐含条件,认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网