题目内容
已知函数f(x)=x2-2ax+a2-1.
(1)若f(1)=3,求实数a的值;
(2)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;
(3)当x∈[-1,1]时,求函数f(x)的最小值g(a).
(1)若f(1)=3,求实数a的值;
(2)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;
(3)当x∈[-1,1]时,求函数f(x)的最小值g(a).
分析:(1)由已知中函数的解析式,将x=1,y=3代入构造a的方程,解方程可得答案.
(2)分析出函数的图象形状及对称轴位置,根据函数f(x)在区间[0,2]上是单调的,得到区间在对称轴同侧,得到答案;
(3)分别讨论区间在对称轴左侧,右侧,两侧的情况,求出对应的最小值,最后综合讨论结果可得答案.
(2)分析出函数的图象形状及对称轴位置,根据函数f(x)在区间[0,2]上是单调的,得到区间在对称轴同侧,得到答案;
(3)分别讨论区间在对称轴左侧,右侧,两侧的情况,求出对应的最小值,最后综合讨论结果可得答案.
解答:解:(1)∵f(x)=x2-2ax+a2-1.
又∵f(1)=3,
即1-2a+a2-1=3
即a2-2a-3=0
解得a=-1,或a=3
(2)∵函数f(x)=x2-2ax+a2-1的图象是开口向上,且以x=a为对称轴的抛物线
又∵函数f(x)在区间[0,2]上是单调的,
则区间[0,2]在对称轴的同一侧
故a≤0或a≥2
(3)当a≤-1时,函数在[-1,1]为增函数,此时函数f(x)的最小值g(a)=f(-1)=a2+2a
当-1<a<1时,函数在[-1,a]上递减,在[a,1]为增函数,此时函数f(x)的最小值g(a)=f(a)=-1
当a≥1时,函数在[-1,1]为减函数,此时函数f(x)的最小值g(a)=f(1)=a2-2a
故g(a)=
又∵f(1)=3,
即1-2a+a2-1=3
即a2-2a-3=0
解得a=-1,或a=3
(2)∵函数f(x)=x2-2ax+a2-1的图象是开口向上,且以x=a为对称轴的抛物线
又∵函数f(x)在区间[0,2]上是单调的,
则区间[0,2]在对称轴的同一侧
故a≤0或a≥2
(3)当a≤-1时,函数在[-1,1]为增函数,此时函数f(x)的最小值g(a)=f(-1)=a2+2a
当-1<a<1时,函数在[-1,a]上递减,在[a,1]为增函数,此时函数f(x)的最小值g(a)=f(a)=-1
当a≥1时,函数在[-1,1]为减函数,此时函数f(x)的最小值g(a)=f(1)=a2-2a
故g(a)=
|
点评:本题考查的知识点是二次函数的性质,二次函数在闭区间上的最值,熟练掌握二次函数的图象和性质,是解答本题的关键.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|