题目内容
已知f(x)=
,则
f(
)=
| 2x |
| 2x+2 |
| 4024 |
| i=1 |
| i |
| 2012 |
2012
| 1 |
| 6 |
2012
.| 1 |
| 6 |
分析:根据所求发现f(x)+f(2-x)=
+
=1,然后根据倒序相加法可求出
f(
)的值,从而求出所求.
| 2x |
| 2x+2 |
| 2 |
| 2x+2 |
| 4023 |
| i=1 |
| i |
| 2012 |
解答:解:∵f(x)=
,
∴f(2-x)=
=
=
,
则f(x)+f(2-x)=
+
=1,
f(
)=
f(
)+f(2)=
f(
)+
∵
f(
)=f(
)+f(
)+…+f(
)①
f(
)=f(
)+f(
)+…f(
)②
∴①+②=2
f(
)=4023
即
f(
)=2011
∴
f(
)=
f(
)+f(2)=
f(
)+
=2011
+
=2012
故答案为:2012
| 2x |
| 2x+2 |
∴f(2-x)=
| 22-x |
| 22-x+2 |
| 4 |
| 4 +2•2x |
| 2 |
| 2x+2 |
则f(x)+f(2-x)=
| 2x |
| 2x+2 |
| 2 |
| 2x+2 |
| 4024 |
| i=1 |
| i |
| 2012 |
| 4023 |
| i=1 |
| i |
| 2012 |
| 4023 |
| i=1 |
| i |
| 2012 |
| 2 |
| 3 |
∵
| 4023 |
| i=1 |
| i |
| 2012 |
| 1 |
| 2012 |
| 2 |
| 2012 |
| 4023 |
| 2012 |
| 4023 |
| i=1 |
| i |
| 2012 |
| 4023 |
| 2012 |
| 4022 |
| 2012 |
| 1 |
| 2012 |
∴①+②=2
| 4023 |
| i=1 |
| i |
| 2012 |
即
| 4023 |
| i=1 |
| i |
| 2012 |
| 1 |
| 2 |
∴
| 4024 |
| i=1 |
| i |
| 2012 |
| 4023 |
| i=1 |
| i |
| 2012 |
| 4023 |
| i=1 |
| i |
| 2012 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 6 |
故答案为:2012
| 1 |
| 6 |
点评:本题主要考查了函数求值,解题的关系发现f(x)+f(2-x)=1,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目