题目内容

12.已知数列{an}满足an≠0,a1=$\frac{1}{3}$,an-1-an=2an•an-1(n≥2,n∈N*),则an=$\frac{1}{2n+1}$,a1a2+a2a3+…+a99a100=$\frac{11}{67}$.

分析 通过对an-1-an=2an•an-1(n≥2,n∈N*)变形可得数列{$\frac{1}{{a}_{n}}$}是以3为首项、2为公差的等差数列,计算可得通项,再利用拆项法、并项相加即得结论.

解答 解:∵an-1-an=2an•an-1(n≥2,n∈N*),an≠0,
∴2=$\frac{{a}_{n-1}-{a}_{n}}{{a}_{n}•{a}_{n-1}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$,
又∵a1=$\frac{1}{3}$,∴$\frac{1}{{a}_{1}}$=3,
∴数列{$\frac{1}{{a}_{n}}$}是以3为首项、2为公差的等差数列,
∴$\frac{1}{{a}_{n}}$=3+2(n-1)=2n+1,
∴an=$\frac{1}{2n+1}$;
∴an•an+1=$\frac{1}{2n+1}•\frac{1}{2n+3}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),
∴a1a2+a2a3+…+a99a100=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{197}$-$\frac{1}{199}$+$\frac{1}{199}$-$\frac{1}{201}$)
=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{201}$)=$\frac{11}{67}$,
故答案为:$\frac{1}{2n+1}$,$\frac{11}{67}$.

点评 本题考查求数列的通项,对表达式的灵活变形和并项相加法是解决本题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网