题目内容

已知函数数学公式的定义域为R,且值域为(-∞,1],求实数m的取值范围.

解:由函数的定义域为R,且值域为(-∞,1],
≤1,
∴4x-m≤x2+1,∴m≥4x-x2-1,
设y=-x2+4x-1=-(x-2)2+3,当x=2时,y取得最大值为3,
故要使m≥y恒成立,只需m≥3,
故m的取值范围为[3,+∞).
分析:由函数的定义域为R,且值域为(-∞,1],可得m≥4x-x2-1,设y=-x2+4x-1,只需使m≥y的最大值即可求解.
点评:本题考查了函数的值域,难度一般,关键是用配方法求函数的最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网