题目内容

已知数列{an}中,前n项和为Sn,点(an+1,Sn+1)在直线y=4x-2,其中n=1,2,3……,

   (Ⅰ)设bn=an+1-2an,且a1=1,求证数列{bn}是等比数列;

   (Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函数f(x)在点x=1处的导数f′(1)并比较f′(1)与

6n2-3n的大小.

解:(I)由已知点(a­n+1,Sn+1)在直线y=4x-2上.

        ∴Sn+1=4(an+1)-2.

        即Sn+1=4an+2.(n=1,2,3,…)

       ∴Sn+2=4an+1+2.

       两式相减,得Sn+2-Sn+1=4an+1-4an.

       即an+2=4an+1-4an

       an+2-2an+1=2(an+1-2an).

       ∵bn=an+1-2an,(n=1,2,3,…)

bn+1=2bn.

由S2=a1+a2=4a1+2,a1=1。

解得a2=5,b1=a2-2a1=3.

∴数列{bn}是首项为3,公式为2的等比数列

   (II)由(I)知bn=3?2n1

         ∵f(x)=b1x+b2x2+…+bnxn

f′(x)=b1+2b2x+…+nbnxn1.

从而f′(1)=b1+2b2+…+nbn

          =3+2?3?2+3?3?22+…+n?3?2n1

          =3(1+2?2+3?22+…+n?3?2n1)

设Tn=1+2?2+3?22+…+n?2n1

2Tn=2+2?22+3?23+…+(n-1)?2n1+n?2n.

两式相减,得-Tn=1+2+22+23+…+2n1n?2n

                =.

∴Tn=(n-1)?2n+1.

f′(1)=3(n-1)?2n+3.

由于f′(1)-(6n2-3n)=3[(n-1)?2n+1-2n2+n]

                   =3(n-1)[2n-(2n+1)].

设g(n)= f′(1) -(6n2-3n).

n=1时,g(1)=0,∴f′(1) =6n2-3n

n=2时,g(2)= -3<0,∴f′(1)<6n2-3n

n≥时,n-1>0,又2n=(1+1)n=≥2n+2>2n+1,

∴(n-1)[2n-(2n+1)]>0,即g(n)>0,从而f′(1)>6n2-3n.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网