题目内容

已知f(x)=(x-a)(x-b)-2(其中a<b),且α,β是方程f(x)=0的两根(α<β),则实数a,b,α,β的大小关系是(  )
分析:首先把方程化为一般形式,由于α,β是方程的解,根据根与系数的关系即可得到a,b,α,β之间的关系,然后对四者之间的大小关系进行讨论即可判断.
解答:解:方程化为一般形式得:x2-(a+b)x+ab-2=0
∵α,β是方程(x-a)(x-b)-2=0的两根,
∴α+β=a+b
∴当α>a时,又∵a<b,α<β则:a<α<β<b;
当α>b时,β<a,又∵a<b,α<β,则不成立.
故选A.
点评:本题考查了一元二次方程的根与系数之间的关系,对a,b,α,β大小关系的讨论是此题的难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网