题目内容

选修4-5:不等式选讲.
设函数f(x)=2|x-1|+|x+2|.
(Ⅰ)求不等式f(x)≥4的解集;
(Ⅱ)若不等式f(x)<|m-2|的解集是非空的集合,求实数m的取值范围.
(Ⅰ)f(x)=
-3x  (x≤-2)
-x+4 ,(-2<x≤1)
3x ,(x>1)
,令-x+4=4 或 3x=4,
得x=0,x=
4
3
,所以,不等式 f(x)≥4的解集是{x|x≤0,或x≥
4
3
}.
(Ⅱ)f(x)在(-∞,1]上递减,[1,+∞)上递增,所以,f(x)≥f(1)=3,
由于不等式f(x)<|m-2|的解集是非空的集合,所以,|m-2|>3,
解之,m<-1或m>5,即实数m的取值范围是:(-∞,-1)∪(5,+∞).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网