题目内容
完成下列问题.
(1)求等式
中的n值;
(2)若
,则n的解集为__________;
(3)已知
试求x、n的值.
(1)原方程可变形为
![]()
![]()
化简整理得n2-3n-54=0.
解此二次方程得n=9或n=-6(不合题意,舍去),所以n=9为所求.
(2)由![]()
![]()
可得n2-11n-12<0.解得-1<n<12.
又∵n∈N*,且n≥5,∴n∈{5,6,7,8,9,10,11}.
(3)∵![]()
∴n-x=2x或x=2x(舍去).∴n=3x.
又由![]()
整理得3(x-1)!(n-x+1)!=11(x+1)!(n-x-1)!,
3(n-x+1)(n-x)=11(x+1)x.将n=3x代入,
整理得6(2x+1)=11(x+1).
∴x=5,n=3x=15.
解析:
(1)本题实质是解一个关于n的方程,但要注意对根的限制条件;
(2)将组合数不等式转化为代数不等式来解;
(3)本题是关于x、n的二元方程组,解此方程组,方程组的解要满足限制条件.
探究函数
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数
,(x>0)在区间(0,2)上递减,则在 上递增;
(2)当x= 时,
,(x>0)的最小值为 ;
(3)试用定义证明
,(x>0)在区间(0,2)上递减;
(4)函数
,(x<0)有最值吗?是最大值还是最小值?此时x为何值?
(5)解不等式
.
解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。
(本题满分12分)探究函数
,
的最小值,并确定取得最小值时
的值,列表如下:
|
|
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
|
|
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.102 |
4.24 |
4.3 |
5 |
5.8 |
7.57 |
… |
请观察表中
值随
值变化的特点,完成下列问题:
(1) 当
时,
在区间
上递减,在区间 上递增;
所以,
=
时,
取到最小值为
;
(2) 由此可推断,当
时,
有最
值为 ,此时
=
;
(3) 证明: 函数
在区间
上递减;
(4) 若方程
在
内有两个不相等的实数根,求实数
的取值范围。