题目内容
对于R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有( )
| A.f(x)≥f(a) | B.f(x)≤f(a) | C.f(x)>f(a) | D.f(x)<f(a) |
根据题意,对于R上可导的任意函数f(x),若满足(x-a)f′(x)≥0
当x≥a时,x-a≥0
∴此时f'(x)≥0
即,当x≥a时,f(x)为增函数.
当x<a时,x-a<0
∴此时f'(x)<0
即,当x<a时,f(x)为减函数.
综上,x=a时,f(x)取最小值f(a)
∴f(x)≥f(a)
故选A
当x≥a时,x-a≥0
∴此时f'(x)≥0
即,当x≥a时,f(x)为增函数.
当x<a时,x-a<0
∴此时f'(x)<0
即,当x<a时,f(x)为减函数.
综上,x=a时,f(x)取最小值f(a)
∴f(x)≥f(a)
故选A
练习册系列答案
相关题目
对于R上可导的任意函数f(x),若满足(x-2)f′(x)≥0,则必有( )
| A、f(1)+f(3)<2f(2) | B、f(1)+f(3)≥2f(2) | C、f(1)+f(3)≤2f(2) | D、f(1)+f(3)>2f(2) |
对于R上可导的任意函数f(x),若满足(x-2)f′(x)≤0,则必有( )
| A、f(-3)+f(3)<2f(2) | B、f(-3)+f(7)>2f(2) | C、f(-3)+f(3)≤2f(2) | D、f(-3)+f(7)≥2f(2) |