题目内容

函数f(x)=x+
1x
,g(x)=x,已知A0(x,0),(x0>0),如图,过A0作平行于y轴的直线交y=g(x)的图象于A1,交y=f(x)的图象于P1,要过P1作平行于x轴的直线交y=g(x)于A2,再过A2作平行于y轴的直线交y=f(x)于P2,…,这样一直作下去;设△A1P1A2的面积为S1,…,△AkPkAk+1的面积为Sk,数列{Sn}的前n项和为Tn,并设Pn(xn,yn).
(1)求S1,S2
(2)求证:yn2=2Tn+2n+x02
(3)若x0=5,求证:45<y1000<45.1.
分析:(1)显然△A1P1A2为等腰直角三角形,从而有S1=
|P1A1|2
2
=
(x0+
1
x0
-x0)
2
2
=
1
2
x
2
0
S2=
|P2A2|2
2
=
(y2-y1)2
2
=
(y1+
1
y1
-y1)
2
2
=
1
2
y
2
1

(2)由图可知An(yn-1,yn-1),,进而可得Sn=
|PnAn|2
2
=
(yn-yn-1)2
2
=
(yn-1+
1
yn-1
-yn-1)
2
2
=
1
2
y
2
n-1

y
2
n
=
y
2
n-1
+
1
y
2
n-1
+2
y
2
n
-
y
2
n-1
=
1
y
2
n-1
+2
y
2
n-1
-
y
2
n-2
=
1
y
2
n-2
+2
,从而可证yn2=2Tn+2n+x02
(3)由(2)
y
2
1000
 =2 
T
2
1000
 +2×1000+25>2025
>452
y
2
100
=2
T
2
100
+2×100+25>225

y
2
1000
 =2
T
2
1000
 +2×1000+25
<2025+
1
x
2
0
+
1
x
2
0
+
1
y
2
100
+…+
1
y
2
100
=2025+100×
1
25
+900×
1
225
=2033<45.12
,故可得证.
解答:(1)解:显然△A1P1A2为等腰直角三角形
S1=
|P1A1|2
2
=
(x0+
1
x0
-x0)
2
2
=
1
2
x
2
0

同理S2=
|P2A2|2
2
=
(y2-y1)2
2
=
(y1+
1
y1
-y1)
2
2
=
1
2
y
2
1

(2)证明:由图可知An(yn-1,yn-1),∴yn=yn-1+
1
yn-1

Sn=
|PnAn|2
2
=
(yn-yn-1)2
2
=
(yn-1+
1
yn-1
-yn-1)
2
2
=
1
2
y
2
n-1

y
2
n
=
y
2
n-1
+
1
y
2
n-1
+2
y
2
n
-
y
2
n-1
=
1
y
2
n-1
+2
y
2
n-1
-
y
2
n-2
=
1
y
2
n-2
+2

y
2
1
-
x
2
0
=
1
x
2
0
+2

y
2
n
-
x
2
0
=
1
x
2
0
+
1
y
2
1
+…+
1
y
2
n-1
+2n=2Tn+2n

∴yn2=2Tn+2n+x02
(3)证明:由(2)
y
2
1000
 =2 
T
2
1000
 +2×1000+25>2025
>452
y
2
100
=2
T
2
100
+2×100+25>225

∵yn=yn-1+
1
yn-1

y
2
1000
 =2
T
2
1000
 +2×1000+25
=2025+
1
x
2
0
+
1
y
2
1
+…+
1
y
2
999

<2025+
1
x
2
0
+
1
x
2
0
+
1
y
2
100
+…+
1
y
2
100
=2025+100×
1
25
+900×
1
225
=2033<45.12

∴45<y1000<45.1.
点评:本题的考点是数列与不等式的综合,考查数列{Sn}的前n项和,考查放缩法证明不等式,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网