题目内容

已知函数f(x)=x2+lnx-ax.
(1)若f(x)在(0,1)上是增函数,求a得取值范围;
(2)在(1)的结论下,设g(x)=e2x+|ex-a|,x∈[0,ln3],求函数g(x)的最小值.
(1)f'(x)=2x+
1
x
-a,(1分)
∵f(x)在(0,1)上是增函数,
∴2x+
1
x
-a>0在(0,1)上恒成立,即a<2x+
1
x
恒成立.
∵2x+
1
x
2
2
(当且仅当x=
2
2
时取等号),所以a<2
2
.(4分)
当a=2
2
时,易知f(x)在(0,1)上也是增函数,所以a≤2
2
.(5分)
(2)设t=ex,则h(t)=t2+|t-a|,
∵x∈[0,ln3],∴t∈[1,3].(7分)
当a≤1时,h(t)=t2+t-a,在区间[1,3]上是增函数,所以h(t)的最小值为h(1)=2-a.(9分)
当1<a≤2
2
时,h(t)=
t2-t+a    1≤t<a
t2+t-a    a≤t≤3

因为函数h(t)在区间[a,3]上是增函数,在区间[1,a]上也是增函数,所以h(t)在[1,3]上为增函数,
所以h(t)的最小值为h(1)=a.(14分)
所以,当a≤1时,g(x)的最小值为2-a;当1<a≤2
2
时,g(x)的最小值为a.(15分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网