题目内容
(本小题满分12分)
已知数列
中,
,且点
在直线
上.数列
中,
,
,
(Ⅰ) 求数列
的通项公式(Ⅱ)求数列
的通项公式;
(Ⅲ)(理)若
,求数列
的前
项和
.
已知数列
(Ⅰ) 求数列
(Ⅲ)(理)若
(Ⅰ)
(n∈
);(Ⅱ)
;(Ⅲ)
(n∈
)
本题考查数列的通项公式的计算和前n项和公式的求法,综合性强,难度大,容易出错.解题时要认真审题,注意错位相减法的灵活运用.
(Ⅰ)由an+1=2an+3得an+1+3=2(an+3),由此能求出an.
(Ⅱ)因为(bn+1,bn)在直线y=x-1上,所以bn=bn+1-1即bn+1-bn=1,由此能求出bn.
(Ⅲ)由cn=an+3=2n+1-3+3=2n+1,知bncn=n•2n+1,所以Sn=1×22+2×23+3×24+…+n•2n+1,再由错位相减法能求出Sn.
解:(Ⅰ)由
得
所以
是首项为
,公比为2的等比数列.
所以
,故
(n∈
)
(Ⅱ)因为
在直线
上,
所以
即
又
故数列
是首项为1,公差为1的等差数列,
所以
(Ⅲ)
=
=
故
所以
故
相减得
所以
(n∈
)
(Ⅰ)由an+1=2an+3得an+1+3=2(an+3),由此能求出an.
(Ⅱ)因为(bn+1,bn)在直线y=x-1上,所以bn=bn+1-1即bn+1-bn=1,由此能求出bn.
(Ⅲ)由cn=an+3=2n+1-3+3=2n+1,知bncn=n•2n+1,所以Sn=1×22+2×23+3×24+…+n•2n+1,再由错位相减法能求出Sn.
解:(Ⅰ)由
所以
所以
(Ⅱ)因为
所以
故数列
所以
(Ⅲ)
所以
故
相减得
所以
练习册系列答案
相关题目