题目内容
已知曲线f(x)=xn+1(n∈N*)与直线x=1交于点P,若设曲线y=f(x)在点P处的切线与x轴交点的横坐标为xn,则log2011x1+log2011x2+…+log2011x2010的值为______.
求导函数,可得f′(x)=(n+1)xn,
设过(1,1)的切线斜率k,则k=f′(1)=n+1,
∴切线方程为y-1=(n+1)(x-1)
令y=0,可得xn=
,
∴x1•x2…x2010=
×
×…×
=
,
∴log2011x1+log2011x2+…+log2011x2010
=log2011(x1×x2×…×x2010)
=log2011
=-1.
故答案为:-1.
设过(1,1)的切线斜率k,则k=f′(1)=n+1,
∴切线方程为y-1=(n+1)(x-1)
令y=0,可得xn=
| n |
| n+1 |
∴x1•x2…x2010=
| 1 |
| 2 |
| 2 |
| 3 |
| 2010 |
| 2011 |
| 1 |
| 2011 |
∴log2011x1+log2011x2+…+log2011x2010
=log2011(x1×x2×…×x2010)
=log2011
| 1 |
| 2011 |
故答案为:-1.
练习册系列答案
相关题目