题目内容
已知数列{an}的首项a1=
,an+1=
,其中n∈N+.
(Ⅰ)求证:数列{
-1}为等比数列;
(Ⅱ)记Sn=
+
+…+
,若Sn<100,求最大的正整数n.
| 3 |
| 5 |
| 3an |
| 2an+1 |
(Ⅰ)求证:数列{
| 1 |
| an |
(Ⅱ)记Sn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
分析:(Ⅰ)利用数列递推式,变形可得
-1=
-
,从而可证数列{
-1}为等比数列;
(Ⅱ)确定数列的通项,利用等比数列的求和公式求和,即可求最大的正整数n.
| 1 |
| an+1 |
| 1 |
| 3an |
| 1 |
| 3 |
| 1 |
| an |
(Ⅱ)确定数列的通项,利用等比数列的求和公式求和,即可求最大的正整数n.
解答:(Ⅰ)证明:∵
=
+
,∴
-1=
-
,
∵
-≠0,∴
-1≠0(n∈N+),
∴数列{
-1}为等比数列.
(Ⅱ)解:由(Ⅰ)可求得
-1=
×(
)n-1,∴
=2×(
)n+1
Sn=
+
+…+
=n+2×(
+
+…+
)=n+2•
=n+1-
,
若Sn<100,则n+1-
<100,
∴nmax=99.
| 1 |
| an+1 |
| 2 |
| 3 |
| 1 |
| 3an |
| 1 |
| an+1 |
| 1 |
| 3an |
| 1 |
| 3 |
∵
| 1 |
| a1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
(Ⅱ)解:由(Ⅰ)可求得
| 1 |
| an |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| an |
| 1 |
| 3 |
Sn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| ||||
1-
|
| 1 |
| 3n |
若Sn<100,则n+1-
| 1 |
| 3n |
∴nmax=99.
点评:本题考查数列递推式,考查等比数列的证明,考查等比数列的求和公式,属于中档题.
练习册系列答案
相关题目