题目内容
(2012•茂名二模)在数列{an}中,an=
.则
(1)数列{an}的前n项和Sn=
;
(2)数列{Sn}的前n项和Tn=
.
| n(n+1) |
| 2 |
(1)数列{an}的前n项和Sn=
| n(n+1)(n+2) |
| 6 |
| n(n+1)(n+2) |
| 6 |
(2)数列{Sn}的前n项和Tn=
| n(n+1)(n+2)(n+3) |
| 24 |
| n(n+1)(n+2)(n+3) |
| 24 |
分析:(1)法一:由an=
=
+
,分组求和可求Sn
(2)由Tn=
+
+…+
+
,利用组合式的性质可求
法2:(1):由an=
=
=
,代入相消法可求和
(2)由(1)中的Sn=
=
,可求Tn
| n(n+1) |
| 2 |
| n2 |
| 2 |
| n |
| 2 |
(2)由Tn=
| C | 3 3 |
| C | 3 4 |
| +C | 3 5 |
| C | 3 n+1 |
| C | 3 n+2 |
法2:(1):由an=
| n(n+1) |
| 2 |
| n(n+1)[(n+2)-(n+1)] |
| 6 |
| n(n+1)(n+2)-n(n-1)(n+1) |
| 6 |
(2)由(1)中的Sn=
| n(n+1)(n+2) |
| 6 |
| [n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)] |
| 24 |
解答:解:(1)法一:∵an=
=
+
=
∴Sn=(
+
)+(
+
)+…+(
+
)
=
(12+22+…+n2)+
(1+2+…+n)
=
×
+
×
=
+
=
=
=
(2)Tn=
+
+…+
+
=
+
+…+
+
+
+
+…+
+
=
+
+…+
=…=
+
+
=
+
=
=
=
法2:(1):∵an=
=
=
∴Sn=
[(1×2×3-0×1×2)+(2×3×4-1×2×3)+(3×4×5-2×3×4)+…+n(n+1)(n+2)-(n-1)n(n+1)]
=
=
(2)∵Sn=
=
=
Tn=
[1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n(n+1)(n+2)(n+3)-n(n-1)(n+1)(n+2)]=
故答案为:
,
| n(n+1) |
| 2 |
| n2 |
| 2 |
| n |
| 2 |
| C | 2 n+1 |
∴Sn=(
| 12 |
| 2 |
| 1 |
| 2 |
| 22 |
| 2 |
| 2 |
| 2 |
| n2 |
| 2 |
| n |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| n(n+1)(2n+1) |
| 6 |
| 1 |
| 2 |
| n(n+1) |
| 2 |
=
| n(n+1)(2n+1) |
| 12 |
| n(n+1) |
| 4 |
| (n+1)(2n2+4n) |
| 12 |
=
| n(n+1)(n+2) |
| 6 |
| C | 3 n+2 |
(2)Tn=
| C | 3 3 |
| C | 3 4 |
| +C | 3 5 |
| C | 3 n+1 |
| C | 3 n+2 |
=
| C | 4 4 |
| C | 3 4 |
| +C | 3 5 |
| C | 3 n+1 |
| C | 3 n+2 |
| =C | 4 5 |
| C | 3 5 |
| C | 3 6 |
| C | 3 n+1 |
| C | 3 n+2 |
=
| C | 4 6 |
| C | 3 6 |
| C | 3 n+2 |
=…=
| C | 4 n+1 |
| C | 3 n+1 |
| C | 3 n+2 |
=
| C | 3 n+2 |
| C | 4 n+2 |
| C | 4 n+3 |
=
| n(n+1)(n+2)(n+3) |
| 24 |
| C | 4 n+3 |
法2:(1):∵an=
| n(n+1) |
| 2 |
| n(n+1)[(n+2)-(n+1)] |
| 6 |
=
| n(n+1)(n+2)-n(n-1)(n+1) |
| 6 |
∴Sn=
| 1 |
| 6 |
=
| n(n+1)(n+2) |
| 6 |
| C | 3 n+2 |
(2)∵Sn=
| n(n+1)(n+2) |
| 6 |
=
| n(n+1)(n+2)[(n+3)-(n-1)] |
| 24 |
=
| [n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)] |
| 24 |
Tn=
| 1 |
| 24 |
| n(n+1)(n+2)(n+3) |
| 24 |
故答案为:
| n(n+1)(n+2) |
| 6 |
| n(n+1)(n+2)(n+3) |
| 24 |
点评:本题主要考查了数列和的求解,解题的关键是熟练应用组合式的性质并能灵活变形.
练习册系列答案
相关题目