题目内容

(2012•茂名二模)在数列{an}中,an=
n(n+1)
2
.则
(1)数列{an}的前n项和Sn=
n(n+1)(n+2)
6
n(n+1)(n+2)
6

(2)数列{Sn}的前n项和Tn=
n(n+1)(n+2)(n+3)
24
n(n+1)(n+2)(n+3)
24
分析:(1)法一:由an=
n(n+1)
2
=
n2
2
+
n
2
,分组求和可求Sn
(2)由Tn=
C
3
3
+
C
3
4
+C
3
5
+…+
C
3
n+1
+
C
3
n+2
,利用组合式的性质可求
法2:(1):由an=
n(n+1)
2
=
n(n+1)[(n+2)-(n+1)]
6
=
n(n+1)(n+2)-n(n-1)(n+1)
6
,代入相消法可求和
(2)由(1)中的Sn=
n(n+1)(n+2)
6
=
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
24
,可求Tn
解答:解:(1)法一:∵an=
n(n+1)
2
=
n2
2
+
n
2
=
C
2
n+1
        
Sn=(
12
2
+
1
2
)
+(
22
2
+
2
2
)+…+(
n2
2
+
n
2

=
1
2
(12+22+…+n2)+
1
2
(1+2+…+n)

=
1
2
×
n(n+1)(2n+1)
6
+
1
2
×
n(n+1)
2

=
n(n+1)(2n+1)
12
+
n(n+1)
4
=
(n+1)(2n2+4n)
12

=
n(n+1)(n+2)
6
=
C
3
n+2
 
(2)Tn=
C
3
3
+
C
3
4
 
+C
3
5
+…+
C
3
n+1
+
C
3
n+2

=
C
4
4
+
C
3
4
+C
3
5
+…+
C
3
n+1
+
C
3
n+2

=C
4
5
+
C
3
5
+
C
3
6
+…+
C
3
n+1
+
C
3
n+2

=
C
4
6
+
C
3
6
+…+
C
3
n+2

=…=
C
4
n+1
+
C
3
n+1
+
C
3
n+2

=
C
3
n+2
+
C
4
n+2
=
C
4
n+3

=
n(n+1)(n+2)(n+3)
24
=
C
4
n+3

法2:(1):∵an=
n(n+1)
2
=
n(n+1)[(n+2)-(n+1)]
6

=
n(n+1)(n+2)-n(n-1)(n+1)
6

∴Sn=
1
6
[(1×2×3-0×1×2)+(2×3×4-1×2×3)+(3×4×5-2×3×4)+…+n(n+1)(n+2)-(n-1)n(n+1)]

=
n(n+1)(n+2)
6
=
C
3
n+2

(2)∵Sn=
n(n+1)(n+2)
6

=
n(n+1)(n+2)[(n+3)-(n-1)]
24

=
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
24

Tn=
1
24
[1×2×3×4
-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n(n+1)(n+2)(n+3)-n(n-1)(n+1)(n+2)]=
n(n+1)(n+2)(n+3)
24

故答案为:
n(n+1)(n+2)
6
n(n+1)(n+2)(n+3)
24
点评:本题主要考查了数列和的求解,解题的关键是熟练应用组合式的性质并能灵活变形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网