题目内容
(2011•南昌模拟)已知
=(
,-1),
=(
,
),且存在实数k和t,使得
=
+(t2-3)
,
=-k
+t
,且
⊥
,试求
的最值.
| a |
| 3 |
| b |
| 1 |
| 2 |
| ||
| 2 |
| x |
| a |
| b |
| y |
| a |
| b |
| x |
| y |
| k+t2 |
| t |
分析:由
•
=0可知
⊥
,再由
⊥
,可得
•
=0,即[
+(t2-3)
]•(-k
+ t
)=0,化简得k=
=
(t2+4t-3),根据二次函数的性质可求最值
| a |
| b |
| a |
| b |
| x |
| y |
| x |
| y |
| a |
| b |
| a |
| b |
| t3-3t |
| 4 |
| k+t2 |
| 4 |
| 1 |
| 4 |
解答:解:由题意有|
|=
=2,|
|=
=1
因为
•
=
×
-1×
=0,故有
⊥
因为
⊥
,故
•
=0
∴[
+(t2-3)
]•(-k
+ t
)=0化简得k=
=
(t2+4t-3)=
(t+2)2-
当t=-2时,
有最小值为-
| a |
(
|
| b |
(
|
因为
| a |
| b |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| a |
| b |
因为
| x |
| y |
| x |
| y |
∴[
| a |
| b |
| a |
| b |
| t3-3t |
| 4 |
| k+t2 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 7 |
| 4 |
当t=-2时,
| k+t2 |
| t |
| 7 |
| 4 |
点评:本题主要考查了向量的数量积的性质:
⊥
?
•
=0的应用,还考查了利用二次函数的性质求解函数的最值,体现了转化思想在解题中的应用.
| a |
| b |
| a |
| b |
练习册系列答案
相关题目