题目内容
设有一样本x1,x2,…,xn,其标准差为sx,另有一样本y1,y2,…,yn,其中yi=3xi+2(i=1,2,…,n),其标准差为sy,求证:sy=3sx.
证明:∵
=
,
∴
=
=
=3
+2.
∴sy2=
[(y12+y22+…+yn2)-n
2]
=
[(3x1+2)2+(3x2+2)2+…+(3xn+2)2-n(3
+2)2]
=
[9(x12+x22+…+xn2)+12(x1+x2+…+xn)+4n-n(9
2+12
+4)]
=
[(x12+x22+…+xn2)-n
2]
=9sx2.
∵sx≥0,sy≥0,
∴sy=3sx.
| . |
| x |
| x1+x2+…+xn |
| n |
∴
| . |
| y |
| y1+y2+…+yn |
| n |
=
| (3x1+2)+(3x2+2)+…+(3x2+2) |
| n |
| 3(x1+x2+…+xn)+2n |
| n |
=3
| . |
| x |
∴sy2=
| 1 |
| n |
| . |
| y |
=
| 1 |
| n |
| . |
| x |
=
| 1 |
| n |
| . |
| x |
| . |
| x |
=
| 9 |
| n |
| . |
| x |
=9sx2.
∵sx≥0,sy≥0,
∴sy=3sx.
练习册系列答案
相关题目