题目内容
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;
(Ⅱ)求p的值;
(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.
分析:(Ⅰ)记甲、乙、丙三人各自破译密码的事件为A1,A2,A3,且,A1,A2,A3相互独立,P(A1) =
,p(A2) =
,p(A3)=p,甲乙二人中至少有一人破译出密码的概率p1=1-p(
).
(Ⅱ)由三人中只有甲破译出密码的概率为
.知
×(1-
)×(1-p)=
,由此能求出p=
.
(Ⅲ)X的可能取值为0,1,2,3,p(X=0)=
.p(X=1)=
.p(X=2)=
.p(X=3)=
.由此能求出X的分布列和期望.
| 1 |
| 2 |
| 1 |
| 3 |
. |
| A1 |
. |
| A2 |
(Ⅱ)由三人中只有甲破译出密码的概率为
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
(Ⅲ)X的可能取值为0,1,2,3,p(X=0)=
| 1 |
| 4 |
| 11 |
| 24 |
| 1 |
| 4 |
| 1 |
| 24 |
解答:解:记甲、乙、丙三人各自破译密码的事件为A1,A2,A3,且,A1,A2,A3相互独立,
则P(A1) =
,p(A2) =
,p(A3)=p,
(Ⅰ)甲乙二人中至少有一人破译出密码的概率
p1=1-p(
)=1-(1-
)(1-
)=
.
(Ⅱ)∵三人中只有甲破译出密码的概率为
.
∴
×(1-
)×(1-p)=
,
解得p=
.
(Ⅲ)X的可能取值为0,1,2,3,
p(X=0)=(1-
)(1-
)(1-
)=
.
p(X=1)=
×(1-
) ×(1-
) +(1-
) ×
×(1-
)+(1-
) ×(1-
) ×
=
.
p(X=2)=
×
×(1-
) +
×(1-
) ×
+(1-
) ×
×
=
.
p(X=3)=
×
×
=
.
∴X的分布列是
EX=0×
+1×
+2×
+3×
=
.
则P(A1) =
| 1 |
| 2 |
| 1 |
| 3 |
(Ⅰ)甲乙二人中至少有一人破译出密码的概率
p1=1-p(
. |
| A1 |
. |
| A2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
(Ⅱ)∵三人中只有甲破译出密码的概率为
| 1 |
| 4 |
∴
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
解得p=
| 1 |
| 4 |
(Ⅲ)X的可能取值为0,1,2,3,
p(X=0)=(1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
p(X=1)=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 11 |
| 24 |
p(X=2)=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
p(X=3)=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 24 |
∴X的分布列是
| X | 0 | 1 | 2 | 3 | ||||||||
| P |
|
|
|
|
| 1 |
| 4 |
| 11 |
| 24 |
| 1 |
| 4 |
| 1 |
| 24 |
| 13 |
| 12 |
点评:本题考查离散型随机变量的分布列和期望,解(1)题时要注意对立事件的运用,解(2)题时要注意方程思想的运用,解(3)题时要认真审题,避免漏解.
练习册系列答案
相关题目