题目内容
对任意非零向量a、b,求证:|a|-|b|≤|a±b|≤|a|+|b|.分析:分向量共线与不共线的情况,利用向量加法、减法的三角形法则做出图形,结合三角形的边的关系:“两边之和大于第三边,两边之差小于第三边”进行证明.
解答:证明:分三种情况考虑.
(1)当a、b共线且方向相同时,|a|-|b|<|a+b|=|a|+|b|,|a|-|b|=|a-b|<|a|+|b|.
(2)当a、b共线且方向相反时,
∵a-b=a+(-b),a+b=a-(-b),
利用(1)的结论有||a|-|b||<|a+b|<|a|+|b|,|a|-|b|<|a-b|=|a|+|b|.
(3)当a,b不共线时,设
=a,
=b,作
=
+
=a+b,
=
-
=a-b,
利用三角形两边之和大于第三边,两边之差小于第三边,得||a|-|b||<|a±b|<|a|+|b|.
综上得证.
(1)当a、b共线且方向相同时,|a|-|b|<|a+b|=|a|+|b|,|a|-|b|=|a-b|<|a|+|b|.
(2)当a、b共线且方向相反时,
∵a-b=a+(-b),a+b=a-(-b),
利用(1)的结论有||a|-|b||<|a+b|<|a|+|b|,|a|-|b|<|a-b|=|a|+|b|.
(3)当a,b不共线时,设
| OA |
| OB |
| OC |
| OA |
| OB |
| BA |
| OA |
| OB |
利用三角形两边之和大于第三边,两边之差小于第三边,得||a|-|b||<|a±b|<|a|+|b|.
综上得证.
点评:本题主要考查了平面向量的共线与不共线时两向量和(或差)的模与向量模的和(或差)的大小关系,解决问题的关键是要熟练运用向量的加法及减法的三角形法则(平行四边形法则).分类讨论的数学思想要注意掌握.
练习册系列答案
相关题目