题目内容
已知函数f(x)=xp+qx+r,f(1)=6,f′(1)=5,f′(0)=3,an=
,n∈N+,则数列{an}的前n项和是______.
| 1 |
| f(n) |
∵f(x)=xp+qx+r,
∴f'(x)=p•xp-1+q,
∵f′(1)=5=p+q,f'(0)=3=q f(1)=6=1+q+r
解得p=2,q=3,r=2,
于是f(x)=x2+3x+2,
∵an=
,n∈N+,
∴an=
=
-
,
∴数列{an}的前n项和:
Sn=
-
+
-
+…+
-
=
-
=
=
.
故答案为:
.
∴f'(x)=p•xp-1+q,
∵f′(1)=5=p+q,f'(0)=3=q f(1)=6=1+q+r
解得p=2,q=3,r=2,
于是f(x)=x2+3x+2,
∵an=
| 1 |
| f(n) |
∴an=
| 1 |
| n2+3n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴数列{an}的前n项和:
Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+2 |
=
| n |
| 2(n+2) |
| n |
| 2n+4 |
故答案为:
| n |
| 2n+4 |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|