ÌâÄ¿ÄÚÈÝ
13£®ÔÚÔ²ÄÚ»1ÌõÏ߶Σ¬½«Ô²·Ö¸î³ÉÁ½²¿·Ö£»»2ÌõÏཻÏ߶Σ¬½«Ô²·Ö¸î³É4¸ö²¿·Ö£»»3ÌõÏ߶Σ¬½«Ô²×î¶à·Ö¸î³É7²¿·Ö£»»4ÌõÏ߶Σ¬½«Ô²×î¶à·Ö¸î³É11²¿·Ö£»¡£®½«Êý2£¬4£¬7£¬11£¬¡£®¼ÇΪÊýÁÐ{an}£¬½«ÊýÁÐ{an}Öпɱ»2Õû³ýµÄÊý°´´ÓСµ½´óµÄ˳Ðò×é³ÉÒ»¸öÐÂÊýÁÐ{bn}£¬¿ÉÒÔÍÆ²â£º£¨1£©b2013ÊÇÊýÁÐ{an}ÖеĵÚ4025Ï£¨2£©b2k=a4k-2 £¨ÓÃk±íʾ£©£®·ÖÎö ¸ù¾ÝÒÑÖª£¬Çó³öΪÊýÁÐ{an}ºÍÊýÁÐ{bn}µÄͨÏʽ£¬½ø¶ø¿ÉµÃ´ð°¸£®
½â´ð ½â£º¡ßn=1£¬a1=1+1
n=2£¬a2=a1+2
n=3£¬a3=a2+3
n=4£¬a4=a3+4
¡
n=n£¬an=an-1+n
ÒÔÉÏʽ×ÓÏà¼ÓÕûÀíµÃ£¬an=1+1+2+3+¡+n=1+$\frac{n£¨n+1£©}{2}$=$\frac{{n}^{2}+n+2}{2}$£®
µ±n=4m+1£¬»òn=4m+2£¬m¡ÊN£¬Ê±an¿É±»2Õû³ý£¬
Ôòb2k=a4k-2£¬
b2k-1=a4k-3£¬
µ±2k-1=2013ʱ£¬k=1007£¬4k-3=4025£¬
¹Ê´ð°¸Îª£º4025£¬a4k-2
µãÆÀ ¹éÄÉÍÆÀíµÄÒ»°ã²½ÖèÊÇ£º£¨1£©Í¨¹ý¹Û²ì¸ö±ðÇé¿ö·¢ÏÖijЩÏàͬÐÔÖÊ£»£¨2£©´ÓÒÑÖªµÄÏàͬÐÔÖÊÖÐÍÆ³öÒ»¸öÃ÷È·±í´ïµÄÒ»°ãÐÔÃüÌ⣨²ÂÏ룩£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿