题目内容
7.命题:“?x∈R,|x|≤0”的否定是?x∈R,|x|>0.分析 直接利用特称命题的否定是全称命题写出结果即可.
解答 解:因为特称命题的否定是全称命题,所以命题:“?x∈R,|x|≤0”的否定是:?x>0,ex≥x+1.
故答案为:?x∈R,|x|>0.
点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.
练习册系列答案
相关题目
18.设y=f(x)存在导数,且满足$\lim_{△→0}\frac{f(1-△x)-f(1)}{△x}$=1,则曲线y=f(x)在(1,f(1))处的切线倾斜角为( )
| A. | 30° | B. | 135° | C. | 45° | D. | 120° |
15.“a=1”是“直线ax+y+1=0与直线x-y+1=0垂直”的( )
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
16.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A∪B发生的概率是( )
| A. | $\frac{5}{12}$ | B. | $\frac{1}{2}$ | C. | $\frac{7}{12}$ | D. | $\frac{3}{4}$ |
17.若0<b<a<1则下列结论不一定成立的是( )
| A. | $\frac{1}{a}$<$\frac{1}{b}$ | B. | $\sqrt{a}$>$\sqrt{b}$ | C. | ab>ba | D. | logba>logab |