题目内容
已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求证:{an}是等差数列;
(2)设
+
+
+…+
=Tn,求证Tn<2.
(1)求证:{an}是等差数列;
(2)设
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
(1)证明:∵点P(an,an+1)(n∈N+)在直线x-y+1=0上,
∴an-an+1+1=0,即an+1-an=1,
∴an是以公差d=1的等差数列.
(2)证明:∵等差数列{an}中,a1=1,d=1,
∴Sn=
,
=2(
-
),
∴Tn=2(1-
+
-
+…+
-
)=2(1-
) <2.
∴an-an+1+1=0,即an+1-an=1,
∴an是以公差d=1的等差数列.
(2)证明:∵等差数列{an}中,a1=1,d=1,
∴Sn=
| n(n+1) |
| 2 |
| 1 |
| Sn |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|