ÌâÄ¿ÄÚÈÝ
5£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬÇÒÁ½×ø±êϵȡÏàͬµÄ³¤¶Èµ¥Î»£®ÒÑÖªÔ²CµÄ¼«×ø±ê·½³ÌÊǦÑ=2$\sqrt{2}$cos£¨¦È+$\frac{¦Ð}{4}$£©£¬ÇÒÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=t}\\{y=-1+2\sqrt{2t}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ö±ÏßlºÍÔ²C½»ÓÚA£¬BÁ½µã£¬PÊÇÔ²CÉϲ»Í¬ÓÚA£¬BµÄÈÎÒâÒ»µã£¬£¨1£©ÇóÔ²CµÄÔ²Ðĵļ«×ø±ê£»
£¨2£©ÇóÈý½ÇÐÎPABÃæ»ýµÄ×î´óÖµ£®
·ÖÎö £¨1£©ÀûÓÃy=¦Ñsin¦È£¬x=¦Ñcos¦È£¬½«CµÄ¼«×ø±ê·½³Ì»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬¿ÉµÃÔ²CµÄÔ²Ðĵļ«×ø±ê£»
£¨2£©Çó³öPµ½Ö±ÏßAB¾àÀëµÄ×î´óÖµ£¬|AB|£¬¼´¿ÉÇóÈý½ÇÐÎPABÃæ»ýµÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©Ô²CµÄ¼«×ø±ê·½³ÌÊǦÑ=2$\sqrt{2}$cos£¨¦È+$\frac{¦Ð}{4}$£©£¬»¯Îª¦Ñ=2cos¦È-2sin¦È£¬
¡à¦Ñ2=2¦Ñcos¦È-2¦Ñsin¦È£¬
ÓɦÑcos¦È=x£¬¦Ñsin¦È=y£¬µÃx2+y2-2x+2y=0£¬¼´£¨x-1£©2+£¨y+1£©2=2£¬
¡àÔ²ÐÄ×ø±êΪ£¨1£¬-1£©£¬¼«×ø±êΪ£¨$\sqrt{2}$£¬$\frac{7¦Ð}{4}$£©£»
£¨2£©Ö±ÏߵįÕͨ·½³ÌΪ2$\sqrt{2}$x-y-1=0£¬
Ô²Ðĵ½Ö±ÏßlµÄ¾àÀëΪd=$\frac{|2\sqrt{2}+1-1|}{3}$=$\frac{2\sqrt{2}}{3}$£¬
¡àÏÒ³¤|AB|=2$\sqrt{2-\frac{8}{9}}$=$\frac{2\sqrt{10}}{3}$£¬
¡ßPµ½Ö±ÏßAB¾àÀëµÄ×î´óֵΪ$\sqrt{2}$+$\frac{2\sqrt{2}}{3}$=$\frac{5\sqrt{2}}{3}$£¬
¡àÈý½ÇÐÎPABÃæ»ýµÄ×î´óֵΪ$\frac{1}{2}¡Á\frac{2\sqrt{10}}{3}¡Á\frac{5\sqrt{2}}{3}=\frac{10\sqrt{5}}{9}$£®
µãÆÀ ±¾ÌâÊÇÖеµÌ⣬¿¼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬µãµ½Ö±ÏߵľàÀ빫ʽµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
| A£® | $\sqrt{3}$ | B£® | 1 | C£® | 4 | D£® | 3 |
| A£® | $\frac{1}{4}$ | B£® | $\frac{3}{8}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{5}{8}$ |