题目内容
设A={x|x=kπ+
,k∈Z },已知
=( 2cos
,sin
),
=(cos
,3sin
),
(1)若α+β=
,且
=2
,求α,β的值.
(2)若
•
=
,其中 α,β∈A,求tanαtanβ的值.
| π |
| 2 |
| a |
| α+β |
| 2 |
| α-β |
| 2 |
| b |
| α+β |
| 2 |
| α-β |
| 2 |
(1)若α+β=
| 2π |
| 3 |
| a |
| b |
(2)若
| a |
| b |
| 5 |
| 2 |
(1)∵α+β=
,
∴
=(1,sin(α-
)),
=(
,3sin(α-
)),(4分)
由
=2
,,得sin(α-
)=0,
∴α=kπ+
,β=-kπ+
,k∈Z.(3分)
(2)∵
•
=2cos2
+3sin2
=1+cos(α+β)+3×
=
+cos(α+β)-
cos(α-β)=
,(3分)
∴cos(α+β)=
cos(α-β),
展开得2cosα•cosβ-2sinα•sinβ=3cosα•cosβ+3sinα•sinβ
即-5sinα•sinβ=cosα•cosβ,
∵α,β∈A,
∴tanα•tanβ=-
.(4分)
| 2π |
| 3 |
∴
| a |
| π |
| 3 |
| b |
| 1 |
| 2 |
| π |
| 3 |
由
| a |
| b |
| π |
| 3 |
∴α=kπ+
| π |
| 3 |
| π |
| 3 |
(2)∵
| a |
| b |
| α+β |
| 2 |
| α-β |
| 2 |
=1+cos(α+β)+3×
| 1-cos(α-β) |
| 2 |
=
| 5 |
| 2 |
| 3 |
| 2 |
| 5 |
| 2 |
∴cos(α+β)=
| 3 |
| 2 |
展开得2cosα•cosβ-2sinα•sinβ=3cosα•cosβ+3sinα•sinβ
即-5sinα•sinβ=cosα•cosβ,
∵α,β∈A,
∴tanα•tanβ=-
| 1 |
| 5 |
练习册系列答案
相关题目