题目内容
在△ABC中,AB=2,AC=3,BC=4,则角A,B,C中最大角的余弦值为________.
-
【解析】根据三角形的性质:大边对大角,由此可知角A最大,由余弦定理得cos A==-
如图,在直三棱柱ABC ?A1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点,
(1)求证:MN∥平面AA1C1C;
(2)若AC=AA1,求证:MN⊥平面A1BC.
已知数列{an}的前n项和是Sn,且Sn+an=1.
(1)求数列{an}的通项公式;
(2)记bn=log3,数列的前n项和为Tn,证明:Tn<.
在△ABC中,角A,B,C所对的边分别为a,b,c,已知cos C+(cos A-sin A)cos B=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.
在△ABC中,若AB=1,AC=|+|=||,则=______.
已知向量a=(2,1),a·b=10,|a+b|=5,则|b|等于________.
已知函数f(x)=.
(1)确定y=f(x)在(0,+∞)上的单调性;
(2)若a>0,函数h(x)=xf(x)-x-ax2在(0,2)上有极值,求实数a的取值范围.
已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.
(1)求通项公式an;
(2)设bn=2an,求数列{bn}的前n项和Sn.
若sin=,则sin=______.