题目内容
x≠0,求证ex>1+x
证明:令f(x)=ex-1-x,
f(0)=e0-1-0=0,f′(x)=ex-1.
①当x>0时,f′(x)=ex-1>0,即f(x)在(0,+∞)上为增函数,∴f(x)>f(0),即ex-1-x>0,即ex>1+x.
②当x<0时,f′(x)=ex-1<0即f(x)在(-∞,0)上为减函数,∴f(x)>f(0).
即ex-1-x>0,即ex>1+x.综上可知:x≠0时,ex>1+x.
练习册系列答案
相关题目
题目内容
x≠0,求证ex>1+x
证明:令f(x)=ex-1-x,
f(0)=e0-1-0=0,f′(x)=ex-1.
①当x>0时,f′(x)=ex-1>0,即f(x)在(0,+∞)上为增函数,∴f(x)>f(0),即ex-1-x>0,即ex>1+x.
②当x<0时,f′(x)=ex-1<0即f(x)在(-∞,0)上为减函数,∴f(x)>f(0).
即ex-1-x>0,即ex>1+x.综上可知:x≠0时,ex>1+x.