题目内容
已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
分析:根据点P(an,an+1)(n∈N*)在直线x-y+1=0上,求出an的通项公式,然后再求出sn的表达式,进而求得答案.
解答:解:∵点P(an,an+1)(n∈N*)在直线x-y+1=0上,
∴an+1-an=1,
∴数列{an}是等差数列,
∵a1=1,
∴sn=
,
∴
=
,
∴
+
+
+…+
=2(1-
+
-…-
)=
,
故答案为
.
∴an+1-an=1,
∴数列{an}是等差数列,
∵a1=1,
∴sn=
| n2+n |
| 2 |
∴
| 1 |
| sn |
| 2 |
| n(n+1) |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 2n |
| n+1 |
故答案为
| 2n |
| n+1 |
点评:本题主要考查数列求和的知识点,解答本题的关键是证明数列{an}是等差数列,然后求出等差数列的前n项和,然后在用裂项相消法求得
+
+
+…+
.
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|