题目内容
2.已知函数f(x)=$\frac{3{x}^{2}+ax}{{e}^{x}}$(a∈R)在[4,+∞)上是减函数,则a的取值范围为[-8,+∞).分析 求函数的导数,利用函数单调性和导数之间的关系转化为在[4,+∞)上f′(x)≤0恒成立,利用换元法结合函数单调性的性质进行求解即可.
解答 解:函数的导数为f′(x)=$\frac{(6x+a){e}^{x}-(3{x}^{2}+ax){e}^{x}}{{(e}^{x})^{2}}$=$\frac{-3{x}^{2}-ax+6x+a}{{e}^{x}}$=$\frac{-3{x}^{2}+(6-a)x+a}{{e}^{x}}$,
若f(x)在[4,+∞)上是减函数,
则f′(x)≤0恒成立,
即-3x2+(6-a)x+a≤0,在[4,+∞)上恒成立,
即-3x2+6x+(1-x)a≤0[4,+∞)上恒成立,
即a≥$\frac{3{x}^{2}-6x}{1-x}$,
令x-1=t,则t≥3,且x=t+1,
则$\frac{3{x}^{2}-6x}{1-x}$=$\frac{3(t+1)^{2}-6(t+1)}{-t}$=$\frac{3{t}^{2}-3}{-t}$=-3t+$\frac{3}{t}$,
则函数y=3t+$\frac{3}{t}$则t≥3上为减函数,
∴-3t+$\frac{3}{t}$≤-3×3+1=-8,
则a≥-8,
故答案为:[-8,+∞).
点评 本题主要考查函数单调性的应用,求函数的导数,结合函数单调性和导数之间的关系,转化为不等式恒成立问题是解决本题的关键.
练习册系列答案
相关题目
10.已知函数f(x)=-x3+3x+m恰有两个零点,则实数m=( )
| A. | -2或2 | B. | -1或1 | C. | -1或-2 | D. | 1或2 |
14.已知点M(-1,0),N(1,0),若直线上存在点P,使得|PM|+|PN|=4,则称该直线为“A型直线”,给出下列直线:①y=x+3;②x=-2;③y=2;④y=2x+1,其中为“A类直线”的是( )
| A. | ①③ | B. | ②④ | C. | ②③ | D. | ③④ |
12.观察如图数表,设2017是该表第m行的第n个数,则m+n的值为( )

| A. | 507 | B. | 508 | C. | 509 | D. | 510 |