题目内容

(2012•东莞市模拟)设函数f(x)=logax(a为常数且a>0,a≠1),已知数列f(x1),f(x2),…,f(xn),…是公差为2的等差数列,且x1=a2
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)当a=
1
2
时,求证:x1+x2+…+xn
1
3
分析:(1)由f(x1),f(x2),…,f(xn),…是公差为2的等差数列,且x1=a2,知f(xn)=loga(a2)+2(n-1)=2n.由此能求出数列{xn}的通项公式.
(2)由(1)和a=
1
2
得,x1+x2+…+xn=(
1
2
2+(
1
2
4+…+(
1
2
2n=
1
3
•[1-(
1
4
)
n
]
.由此能够证明当a=
1
2
时,x1+x2+…+xn
1
3
解答:解:(1)∵f(x1),f(x2),…,f(xn),…是公差为2的等差数列,
x1=a2
∴f(xn)=loga(a2)+2(n-1)=2n.
∵f(xn)=loga(xn)=2n,
∴xn=a2n
(2)由(1)和a=
1
2
得,
x1+x2+…+xn
=(
1
2
2+(
1
2
4+…+(
1
2
2n
=
1
4
[1-(
1
4
)
n
]
1-
1
4

=
1
3
•[1-(
1
4
)
n
]

1-(
1
4
)
n
<1

1
3
•[1-(
1
4
)
n
]
1
3

故当a=
1
2
时,x1+x2+…+xn
1
3
点评:本题考查数列与函数的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网