题目内容
是抛物线上一点,若到焦点的距离为,那么点的坐标为 。
设,∵焦点在轴正半轴上,∴到准线的距离为=,∴,∴代入抛物线的方程得,∴,∴。
已知抛物线:=,圆:的圆心为点M
(Ⅰ)求点M到抛物线的准线的距离;
(Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程
(本题满分15分)
下列说法中,正确的有 .
①若点是抛物线上一点,则该点到抛物线的焦点的距离是;
②设、为双曲线的两个焦点,为双曲线上一动点,,则的面积为;
③设定圆上有一动点,圆内一定点,的垂直平分线与半径的交点为点,则的轨迹为一椭圆;
④设抛物线焦点到准线的距离为,过抛物线焦点的直线交抛物线于A、B两点,则、、成等差数列.
已知抛物线=,圆的圆心为点M。
(Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂足于AB,求直线的方程.