题目内容
已知∫01(3ax+1)(x+b)dx=0,a,b∈R,试求ab的取值范围.
∫01(3ax+1)(x+b)dx
=∫01[3ax2+(3ab+1)x+b]dx
=[ax3+
(3ab+1)x2+bx]
=a+
(3ab+1)+b=0
即3ab+2(a+b)+1=0
设ab=t∴a+b=-
则a,b为方程x2+
x+t=0两根
△=
-4t≥0∴t≤
或t≥1
∴a•b∈(-∞,
]∪[1,+∞)
=∫01[3ax2+(3ab+1)x+b]dx
=[ax3+
| 1 |
| 2 |
| | | 10 |
=a+
| 1 |
| 2 |
即3ab+2(a+b)+1=0
设ab=t∴a+b=-
| 3t+1 |
| 2 |
则a,b为方程x2+
| 3t+1 |
| 2 |
△=
| (3t+1)2 |
| 4 |
| 1 |
| 9 |
∴a•b∈(-∞,
| 1 |
| 9 |
练习册系列答案
相关题目