题目内容
等差数列{an}中,Sn是前n项和,a1=-2010,
-
=2,则S2013的值为______.
| S2007 |
| 2007 |
| S2005 |
| 2005 |
由题意设等差数列{an}的公差为d,则由求和公式可得
Sn=na1+
d,故
=a1+
d,
故
-
=(a1+
d)-(a1+
d)
=d=2,故S2013=2013×(-2010)+
×2
=2013×(-2010)+2013×2012=2013×2=4026
故答案为:4026
Sn=na1+
| n(n-1) |
| 2 |
| Sn |
| n |
| n-1 |
| 2 |
故
| S2007 |
| 2007 |
| S2005 |
| 2005 |
| 2007-1 |
| 2 |
| 2005-1 |
| 2 |
=d=2,故S2013=2013×(-2010)+
| 2013×2012 |
| 2 |
=2013×(-2010)+2013×2012=2013×2=4026
故答案为:4026
练习册系列答案
相关题目