题目内容
如果实数满足条件:,则的最大值是 。
春节期间,某单位要安排位行政领导从初一至初六值班,每天安排人,每人值班两天,则共有多少种安排方案?( )
. . . ..
执行如图所示的程序框图,输出的T=
A.17 B.29 C.44 D.52
已知f(x)=|x+1|+|x-2|,g(x)=|x+1|-|x-a|+a(a∈R).
(1)解不等式f(x)≤5;
(2)若不等式f(x)≥g(x)恒成立,求a的取值范围.
下图可能是下列哪个函数的图象( )
. .
某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(Ⅰ)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的累计得分为X,若X≤3的概率为,求;
(Ⅱ)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
已知集合,则
A. B. C. D.
甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量X,求X的分布列和数学期望.
已知等比数列{an}的前n项和,则实数 t 的值为 ________.