题目内容
(2013•湖南)设Sn为数列{an}的前n项和,Sn=(-1)nan-
,n∈N*,则
(1)a3=
(2)S1+S2+…+S100=
(
-1)
(
-1).
| 1 |
| 2n |
(1)a3=
-
| 1 |
| 16 |
-
;| 1 |
| 16 |
(2)S1+S2+…+S100=
| 1 |
| 3 |
| 1 |
| 2100 |
| 1 |
| 3 |
| 1 |
| 2100 |
分析:(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式an=(-1)nan+(-1)nan-1+
.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;
(2)把(1)中求出的数列的通项公式代入Sn=(-1)nan-
,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.
| 1 |
| 2n |
(2)把(1)中求出的数列的通项公式代入Sn=(-1)nan-
| 1 |
| 2n |
解答:解:由Sn=(-1)nan-
,n∈N*,
当n=1时,有a1=(-1)1a1-
,得a1=-
.
当n≥2时,an=Sn-Sn-1=(-1)nan-
-(-1)n-1an-1+
.
即an=(-1)nan+(-1)nan-1+
.
若n为偶数,则an-1=-
(n≥2).
所以an=-
(n为正奇数);
若n为奇数,则an-1=-2an+
=(-2)•(-
)+
=
.
所以an=
(n为正偶数).
所以(1)a3=-
=-
.
故答案为-
;
(2)因为an=-
(n为正奇数),所以-a1=-(-
)=
,
又an=
(n为正偶数),所以a2=
.
则-a1+a2=2×
.
-a3=-(-
)=
,a4=
.
则-a3+a4=2×
.
…
-a99+a100=2×
.
所以,S1+S2+S3+S4+…+S99+S100
=(-a1+a2)+(-a3+a4)+…+(-a99+a100)-(
+
+…+
)
=2(
+
+…+
)-(
+
+…+
)
=2•
-
=
(
-1).
故答案为
(
-1).
| 1 |
| 2n |
当n=1时,有a1=(-1)1a1-
| 1 |
| 2 |
| 1 |
| 4 |
当n≥2时,an=Sn-Sn-1=(-1)nan-
| 1 |
| 2n |
| 1 |
| 2n-1 |
即an=(-1)nan+(-1)nan-1+
| 1 |
| 2n |
若n为偶数,则an-1=-
| 1 |
| 2n |
所以an=-
| 1 |
| 2n+1 |
若n为奇数,则an-1=-2an+
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n |
| 1 |
| 2n-1 |
所以an=
| 1 |
| 2n |
所以(1)a3=-
| 1 |
| 24 |
| 1 |
| 16 |
故答案为-
| 1 |
| 16 |
(2)因为an=-
| 1 |
| 2n+1 |
| 1 |
| 22 |
| 1 |
| 22 |
又an=
| 1 |
| 2n |
| 1 |
| 22 |
则-a1+a2=2×
| 1 |
| 22 |
-a3=-(-
| 1 |
| 24 |
| 1 |
| 24 |
| 1 |
| 24 |
则-a3+a4=2×
| 1 |
| 24 |
…
-a99+a100=2×
| 1 |
| 2100 |
所以,S1+S2+S3+S4+…+S99+S100
=(-a1+a2)+(-a3+a4)+…+(-a99+a100)-(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2100 |
=2(
| 1 |
| 4 |
| 1 |
| 16 |
| 1 |
| 2100 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2100 |
=2•
| ||||
1-
|
| ||||
1-
|
=
| 1 |
| 3 |
| 1 |
| 2100 |
故答案为
| 1 |
| 3 |
| 1 |
| 2100 |
点评:本题考查了数列的求和,考查了数列的函数特性,解答此题的关键在于当n为偶数时能求出奇数项的通项,当n为奇数时求出偶数项的通项,此题为中高档题.
练习册系列答案
相关题目