题目内容

12.已知sinθ-cosθ=$\frac{1}{2}$,θ∈(0,π),则tanθ=$\frac{4+\sqrt{7}}{3}$.

分析 把已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,求出sinθ+cosθ的值,与已知等式联立求出sinθ与cosθ的值,即可确定出tanθ的值.

解答 解:对sinθ-cosθ=$\frac{1}{2}$①,平方得1-2sinθcosθ=$\frac{1}{4}$,即2sinθcosθ=$\frac{3}{4}$,
由θ∈(0,π),知θ∈(0,$\frac{π}{2}$),
∵(sinθ+cosθ)2=1+2sinθcosθ=$\frac{7}{4}$,
∴sinθ+cosθ=$\frac{\sqrt{7}}{2}$②,
联立①②,解得:sinθ=$\frac{\sqrt{7}+1}{4}$,cosθ=$\frac{\sqrt{7}-1}{4}$,
则tanθ=$\frac{4+\sqrt{7}}{3}$,
故答案为:$\frac{4+\sqrt{7}}{3}$

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网