题目内容
设函数f(x)=sin(x+60°)+2sin(x-60°)-
cos(120°-x).
(1)求f(30°)、f(60°)的值;
(2)由(1)你能得到什么结论?并给出你的证明.
| 3 |
(1)求f(30°)、f(60°)的值;
(2)由(1)你能得到什么结论?并给出你的证明.
(1)f(30°)=sin90°+2sin(-30°)-
cos90°=1-1+0=0,
f(60°)=sin120°+2sin0°-
cos60°=
+0-
×
=0;
(2)由(1)得f(x)=0,证明如下:f(x)=sin(x+60°)+2sin(x-60°)-
cos(120°-x)
=sinxcos60°+cosxsin60°+2(sinxcos60°-cosxsin60°)-
(cos120°cosx+sin120°sinx)
=
sinx+
cosx+2(
sinx-
cosx)-
(-
cosx+
sinx)
=
sinx+
cosx+sinx-
cosx+
cosx-
sinx)=0
即f(x)=0.
| 3 |
f(60°)=sin120°+2sin0°-
| 3 |
| ||
| 2 |
| 3 |
| 1 |
| 2 |
(2)由(1)得f(x)=0,证明如下:f(x)=sin(x+60°)+2sin(x-60°)-
| 3 |
=sinxcos60°+cosxsin60°+2(sinxcos60°-cosxsin60°)-
| 3 |
=
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| 3 |
| ||
| 2 |
| 3 |
| 2 |
即f(x)=0.
练习册系列答案
相关题目