题目内容

8.已知线段AD∥平面α,且与平面α的距离等于4,点B是平面α内动点,且满足AB=5,AD=10.则B、D两点之间的距离的最大值为$\sqrt{185}$.

分析 记A、D在面α内的射影分别为A1、D1,由AB=5,可得出B在面α内以A1为圆心、3为半径的圆周上,由勾股定理能求出B、D两点之间的距离的最大值.

解答 解:记A、D在面α内的射影分别为A1、D1
∵AB=5,AA1=4,∴A1B=3,
即B在面α内以A1为圆心、3为半径的圆周上,
又A1D1=10,故D1B最大为13,最小为7,而DD1=4,
由勾股定理得BB、D两点之间的距离的最大值为:$\sqrt{1{3}^{2}+{4}^{2}}$=$\sqrt{185}$.
故答案为:$\sqrt{185}$.

点评 本题考查两点间距离的最大值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网