题目内容

已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为                         

 

【答案】

【解析】解:设双曲线C的焦点坐标是F1和F2,虚轴两个端点是B1和B2,则四边形F1B1F2B2为菱形.

若∠B2F1B1=60°,则∠B2F1F2=30°.由勾股定理可知c= 3 b.∴a2= 3b2-b2 = 2 b2,

故双曲线C的离心率为e=

若∠F1B2F2=60°,则∠F1B2B1=30°,由勾股定理可知b= ,不满足c>b,所以不成立.

综上所述,双曲线C的离心率为

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网