题目内容

已知将函数的图像按向量平移,得到函数的图像。

(1)求函数的解析式;

  (2)当时,总有恒成立,求的范围

解析:(1)按平移,即将函数向左平移1个单位,再向上平移2个单位,所以得到解析式为:

(2)由,在a>1,且x∈时恒成立.记,则问题等价于

令t=(1-x),t∈,可证得H(x)=上单调递减.

∴H(t)的最小值为H(1)=1,又,∴F(x)的最小值为0,

m的取值范围为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网