题目内容
已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[-1,0]上的最小值为________.
-![]()
【解析】因为函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,所以函数g(x)=ax3+bx在[0,1]上的最大值为2,而g(x)是奇函数,所以g(x)在[-1,0]上的最小值为-2,故f(x)在[-1,0]上的最小值为-2+2-1=-
.
练习册系列答案
相关题目
题目内容
已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[-1,0]上的最小值为________.
-![]()
【解析】因为函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,所以函数g(x)=ax3+bx在[0,1]上的最大值为2,而g(x)是奇函数,所以g(x)在[-1,0]上的最小值为-2,故f(x)在[-1,0]上的最小值为-2+2-1=-
.