题目内容
在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).
(1)求数列{an}的通项公式;
(2)若bn=log2an,
+
+…+
<m对于任意的n∈N*,且n≥3恒成立,求m的取值范围.
(1)求数列{an}的通项公式;
(2)若bn=log2an,
| 1 |
| b3b4 |
| 1 |
| b4b5 |
| 1 |
| bnbn+1 |
(1)∵an=an-1+an-2+…+a2+a1(n∈N*,n≥2),
∴Sn-Sn-1=Sn-1,∴
=2,
∴数列{Sn}是以S1=a1=1为首项,以2为公比的等比数列,
∴Sn=2n-1.当n≥2时,an=Sn-Sn-1=2n-1-2n-2=2n-2.
∵a1=1不适合上式,
∴数列的通项公式为an=
(2)当n∈N*,且n≥3时,bn=n-2,
=
=
-
,
∴
+
+…+
=(1-
)+(
-
)+…+(
-
)=1-
<m恒成立,
∴m≥1.
∴Sn-Sn-1=Sn-1,∴
| Sn |
| Sn-1 |
∴数列{Sn}是以S1=a1=1为首项,以2为公比的等比数列,
∴Sn=2n-1.当n≥2时,an=Sn-Sn-1=2n-1-2n-2=2n-2.
∵a1=1不适合上式,
∴数列的通项公式为an=
|
(2)当n∈N*,且n≥3时,bn=n-2,
| 1 |
| bnbn+1 |
| 1 |
| (n-2)(n-1) |
| 1 |
| n-2 |
| 1 |
| n-1 |
∴
| 1 |
| b3b4 |
| 1 |
| b4b5 |
| 1 |
| bnbn+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-2 |
| 1 |
| n-1 |
| 1 |
| n-1 |
∴m≥1.
练习册系列答案
相关题目