题目内容

数列{an}满足a1=2,an+1=an2+6an+6(n∈N×
(Ⅰ)设Cn=log5(an+3),求证{Cn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=
1
an-6
-
1
a2n
+6an
,数列{bn}的前n项的和为Tn,求证:-
5
16
Tn≤-
1
4
(Ⅰ)由an+1=an2+6an+6得an+1+3=(an+3)2
log(an+1+3)5
=2
log(an+3)5
,即cn+1=2cn
∴{cn}是以2为公比的等比数列.
(Ⅱ)又c1=log55=1,
∴cn=2n-1,即
log(an+3)5
=2n-1
∴an+3=52n-1
故an=52n-1-3
(Ⅲ)∵bn=
1
an-6
-
1
an2+6an
=
1
an-6
-
1
an+1-6
,∴Tn=
1
a1-6
-
1
an+1-6
=-
1
4
-
1
52n-9

又0<
1
52n-9
1
52-9
=
1
16

∴-
5
16
≤Tn<-
1
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网