题目内容
2.将函数y=sin2x的图象向左平移φ(φ>0)个单位,若所得的图象过点($\frac{π}{6}$,$\frac{\sqrt{3}}{2}$),则φ的最小值为$\frac{π}{6}$.分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,求得φ的最小值.
解答 解:函数y=sin2x的图象向左平移φ(φ>0)个单位,若所得的图象对应的函数解析式为y=sin2(x+φ),
再根据所得函数的图象过点($\frac{π}{6}$,$\frac{\sqrt{3}}{2}$),可得sin2($\frac{π}{6}$+φ)=$\frac{\sqrt{3}}{2}$,则φ的最小值满足2φ+$\frac{π}{3}$=$\frac{2π}{3}$,
求得φ的最小值为$\frac{π}{6}$,
故答案为:$\frac{π}{6}$.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,根据三角函数的值求角,属于基础题.
练习册系列答案
相关题目
12.
某个公司调查统计它的员工每周参与体育锻炼的时间,样本容量为100人,将调查结果统计为频率分布直方图,如图.我们将每周体育锻炼时间不低于150分钟的人称为“勤于锻炼者”,并将有关性别的信息统计到表中.
(1)根据图表信息,判断“勒于锻炼者”是否与性别有关?
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}+{n}_{+2}}$
(2)在调查中还统计了员工的年龄,发现公司员工的年龄服从正态分布N(35,9),那么从公司中随机选取一名员工,他的年龄在32-38岁之间的概率是多少?(Φ(1)=0.8413)
(3)由于猜测员工的锻炼时间y与年龄x成线性相关,所以根据调查结果进行了线性回归分析,得到回归方程为y=-5x+b,如果员工的平均锻炼时间是110分钟,那么请判断下列说法的正误:
①b=285;
②由于回归方程的斜率是负的,说明年龄越大的员工,每周锻炼时间一定越短;
③由于回归直线方程的斜率是负的,说明两个变量的相关关系是负相关;
④能够算出回归方程,说明两个变旦之间确实是线性相关关系;
⑤回归直线是所有直线中穿过数据点最多的直线;
⑥两个变量是不是成线性相关关系还要看相关系数的大小.
| “勤于锻炼者” | 非“勤于锻炼者” | 合计 | |
| 男 | 25 | 70 | |
| 女 | |||
| 合计 |
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}+{n}_{+2}}$
| p(X2≥k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
(3)由于猜测员工的锻炼时间y与年龄x成线性相关,所以根据调查结果进行了线性回归分析,得到回归方程为y=-5x+b,如果员工的平均锻炼时间是110分钟,那么请判断下列说法的正误:
①b=285;
②由于回归方程的斜率是负的,说明年龄越大的员工,每周锻炼时间一定越短;
③由于回归直线方程的斜率是负的,说明两个变量的相关关系是负相关;
④能够算出回归方程,说明两个变旦之间确实是线性相关关系;
⑤回归直线是所有直线中穿过数据点最多的直线;
⑥两个变量是不是成线性相关关系还要看相关系数的大小.