题目内容
已知数列{an},{cn}满足条件:a1=1,an+1=2an+1,cn=
.
(1)若bn=an+1,并求数列{bn}的通项公式;
(2)数列{cn}的前n项和Tn,求数列{(2n+3)Tn•bn}前n项和Qn.
| 1 | (2n+1)(2n+3) |
(1)若bn=an+1,并求数列{bn}的通项公式;
(2)数列{cn}的前n项和Tn,求数列{(2n+3)Tn•bn}前n项和Qn.
分析:(1):由已知可得an+1+1=2(an+1),结合等比数列的通项公式可求
(2)由cn=
=
(
-
),考虑利用裂项求和可求Tn,然后代入(2n+3)Tn•bn=n•2n,再利用错位相减求和即可求解
(2)由cn=
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
解答:解:(1):∵a1=1,an+1=2an+1,
∴an+1+1=2(an+1)
∴
=2且a1+1=2
∵bn=an+1,
∴
=2且b1=2
∴{bn}是以2为首项以2为公比的等比数列
∴bn=2n
(2)∵cn=
=
(
-
)
∴Tn=b1+b2+…+bn=
(
-
+
-
+…+
-
)
=
(
-
)=
∴(2n+3)Tn•bn=n•2n
∴Qn=1•2+2•22+…+n•2n
2Qn=1•22+2•23+…+(n-1)•2n+n•2n+1
两式相减可得,-Qn=2+22+…+2n-n•2n+1=
-n•2n+1=(2-n)•2n+1-2
∴Qn=(n-2)•2n+1+2
∴an+1+1=2(an+1)
∴
| an+1+1 |
| an+1 |
∵bn=an+1,
∴
| bn+1 |
| bn |
∴{bn}是以2为首项以2为公比的等比数列
∴bn=2n
(2)∵cn=
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Tn=b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
| n |
| 2n+3 |
∴(2n+3)Tn•bn=n•2n
∴Qn=1•2+2•22+…+n•2n
2Qn=1•22+2•23+…+(n-1)•2n+n•2n+1
两式相减可得,-Qn=2+22+…+2n-n•2n+1=
| 2(1-2n) |
| 1-2 |
∴Qn=(n-2)•2n+1+2
点评:本题主要考查了利用数列的递推公式an+1=pan+q构造等比数列求解数列的通项公式及错位相减求解数列的和,属于数列知识的综合应用.
练习册系列答案
相关题目